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Abstract: The study of environmental sound classification (ESC) has become popular over the 1

years due to the intricate nature of environmental sounds and the evolution of deep learning (DL) 2

techniques. Forest ESC is one use case of ESC, which has been widely experimented with recently to 3

identify illegal activities inside a forest. However, at present, there is a limitation of public datasets 4

specific to all the possible sounds in a forest environment. Most of the existing experiments have 5

been done using generic environment sound datasets such as ESC-50, U8K, and FSD50K. Importantly, 6

in DL-based sound classification, the lack of quality data can cause misguided information, and the 7

predictions obtained remain questionable. Hence, there is a requirement for a well-defined benchmark 8

forest environment sound dataset. This paper proposes FSC22, which fills the gap of a benchmark 9

dataset for forest environmental sound classification. It includes 2025 sound clips under 27 acoustic 10

classes, which contain possible sounds in a forest environment. We discuss the procedure of dataset 11

preparation and validate it through different baseline sound classification models. Additionally, it 12

provides an analysis of the new dataset compared to other available datasets. Therefore, this dataset 13

can be used by researchers and developers who are working on forest observatory tasks. 14

Keywords: forest acoustic dataset; environment sound classification; machine learning; freesound; 15

deep learning 16

1. Introduction 17

Environmental sound recognition is a widely used technique when identifying various 18

sound events for surveillance or monitoring systems based on the acoustic environment. 19

Several investigations have been carried out with different techniques in the context of 20

a forest monitoring system, to protect forest reserves. For example, prior studies have 21

experimented with different sound classification approaches for the recognition of various 22

species and possible forest threats like illegal logging, poaching, and wildfire [1–5]. In such 23

systems, environmental sounds are captured, processed using a modelling algorithm, and 24

classified into different sound classes. 25

With the technical advancement, sound classification approaches evolved from Ma- 26

chine Learning (ML) models such as K-Nearest Neighbor (KNN) [3,6,7], XGBoost [8,9], 27

Gaussian Mixture Modelling (GMM) [5,10], and Support Vector Machine (SVM) [6,11,12] 28

to Deep Learning. Deep neural networks (DNNs) such as Convolutional Neural networks 29

(CNN) and Recurrent Neural Networks (RNN) require a large amount of labelled data 30

compared to ML for a promising result. Hence, when using DL-based approaches, a well- 31

biased and rich dataset with relatively high data size is essential as the performance keeps 32

increasing with a quality dataset. 33

Although several studies have been carried out in the forest acoustic monitoring con- 34

text, still, a standard benchmark dataset specific to forest sounds is unavailable. Therefore 35

most of the existing studies have utilized publicly available environmental sound datasets 36

like ESC-50 [4,13–17], UrbanSound8K (U8k) [14,18–21], FSD50K [22,23] and SONYC-UST 37

[24,25]. These datasets contain a large amount of audio data categorized into several groups 38

covering a broad area of sound events. However, a limited number of classes can be used 39
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for forest environment sound classification, and most data are irrelevant for such a domain. 40

Since a significant number of resources need to be utilized to extract data from datasets 41

and to annotate the data points according to a suitable taxonomy, the use of public datasets 42

directly for the classification model is impotent. 43

Additionally, some studies have utilized datasets such as BIRDZ [26,27] and Xeno- 44

canto Archive [28–30], which contain only bird sounds. Xeno-canto Archive is an open 45

audio collection dedicated to sharing bird sounds, and BIRDZ is a control audio dataset 46

originating from the Xeno-canto Archive, which contains a subset of 11 bird species. As 47

it contains audio data specific to one class, several such datasets need to be used in the 48

forest sound classification system. Moreover, several researchers have experimented with 49

private datasets due to the unavailability of forest-specific sound datasets. For instance, 50

in such studies, they have deployed sound sensors in a forest environment and recorded 51

the sound events to create a dataset according to their requirements [6,31,32]. In contrast, 52

some studies have created datasets using audio clips collected from online sound data 53

repositories like free sound [3,5,11]. With a closer look at the literature, it can be identified 54

that the forest acoustic monitoring domain suffers from certain shortcomings including 55

the lack of a standard taxonomy and the unavailability of a public benchmark dataset. 56

These limitations motivated us to introduce a new dataset for the domain. Accordingly, the 57

novelty of this paper is to present a standard dataset for forest sound classification and to 58

provide a comprehensive overview of the procedure for creating and validating the dataset. 59

Addressing the current research gaps we introduce FSC22 [33], a novel benchmark dataset 60

for the acoustic-based forest monitoring domain. It contains 5 seconds long 2025 audio clips 61

originating from an online audio database FreeSound. All sound events are categorized 62

into 6 major classes, which are further divided into 34 subclasses. For the initial phase of 63

dataset composition, 27 subclasses were picked, and 75 audio samples were collected per 64

class. Each audio clip was manually annotated and verified to ensure the quality of the 65

dataset. The key contributions of this paper can be summarized as follows. 66

• Introduces a novel public benchmark dataset consisting of forest environmental 67

sounds, which can be utilized for acoustic-based forest monitoring. 68

• Presents a comprehensive description of the methodology used for dataset creation, 69

including data acquisition from FreeSound, filtering, and validation to normalization. 70

• Explains the baseline models used for the sound classification and the selection criteria 71

for those models. 72

• Provides a detailed evaluation of the dataset using human classification, ML-based 73

and DL-based classification. 74

• Presents a comprehensive discussion of the results obtained with the proposed FSC22 75

dataset and compares them with the publicly available datasets. 76

We have created the FSC22 dataset and made it freely available to support and moti- 77

vate future researchers in this domain [33]. We expect that this dataset will help research 78

communities to better understand forest acoustic surveillance and experiment with the do- 79

main. The rest of the paper is structured as follows. Section 2 explores the related datasets 80

used in previous research. Section 3 provides an overview of the taxonomy of the proposed 81

dataset. Section 4 introduces the FSC22 dataset, including the data collection methodology 82

and its importance to the acoustic domain. Section 5 provides a comprehensive description 83

of the baseline model-based dataset evaluation approach. Section 6 describes the experi- 84

ments conducted on the dataset namely human classification and baseline model-based 85

classification, with the results and observations. Finally, Section 7 concludes the paper. 86

2. Related Work 87

Seminal contributions have been made to the ESC context in recent years. Among 88

those, several instances of research carried out for forest acoustic monitoring can be identi- 89

fied. Forest acoustic monitoring is crucial as it provides a firm basis of evidence to arrive at 90

conclusions to conserve forest coverage and species. However, due to the unavailability 91

of a comprehensive forest-specific sound dataset, most of the previous research on forest 92
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monitoring was done using a common environmental sound dataset or a private dataset 93

according to the requirement. This section provides an overview of the publicly available 94

environmentally sound datasets and other datasets utilized by previous researchers in this 95

domain. However, to the best of our knowledge, there is no forest-specific sound dataset in 96

the literature. 97

Among the available datasets, ESC-50 [34] is a frequently used environmental sound 98

dataset for forest acoustic monitoring. For instance, Andreadis et al. [4], have utilized ESC- 99

50 to detect illegal tree-cutting and identify animal species. ESC-50 is a dataset consisting 100

of 2000 environmental audio clips under 50 classes of common sound events. It contains 101

5-second long 40 recording samples per class, extracted from FreeSound. Figure 1 shows a 102

section of the ESC-50 dataset taxonomy emphasizing forest-specific sounds. Moreover, U8K 103

[35] is another popular dataset used in many types of research on audio-based monitoring 104

systems [18,36]. U8K is a subset of the main Urban Sound dataset, which contains 8732 105

labelled sound clips of urban sounds from 10 classes. The classes of this dataset are 106

drawn from the urban sound taxonomy [37], and all the recordings are extracted from 107

Freesound. Figure 2 includes a part of the U8K dataset taxonomy mostly relevant to the 108

forest environment sound domain. FSD50K [38] is an open dataset of human-labelled 109

sound events. It consists of over 51K audio clips totalling over 100h of audio manually 110

labelled using 200 classes. The classes of this dataset are drawn from AudioSet Ontology 111

[39]. All the above-mentioned 3 datasets were created using the audio extracted from the 112

Freesound project. It is an audio-based public dataset that contains more than 500 000 113

audio clips. 114

Figure 1. ESC-50 dataset

Figure 2. Urbansound8K dataset

Moreover, SONYC-UST [40] is another quality dataset, where data is grouped into 8 115

main classes and further divided into 23 fine-grained classes. This can be considered a more 116

realistic dataset as it was created using the audio data acquired using the acoustic sensors 117

deployed in New York City. Figure 3 shows a part of the SONYC-UST dataset taxonomy 118

highlighting the audio classes specific to forest monitoring and surveillance. AudioSet 119

[41] is another audio event dataset, including over 2M tracks from Youtube videos. Every 120
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10-second video is annotated using over 500 sound classes derived from AudioSet ontology 121

[39]. The main concern with AudioSet is it cannot be considered an open dataset due to the 122

copyright issues and Terms of Services constraint from Youtube. However, as the clips are 123

collected from Youtube, they may consist of clips with poor quality and can disappear after 124

a certain time due to privacy issues or copyright claims. Table 1 presents a summary of the 125

existing environmental sound datasets. 126

Figure 3. SONYC-UST-V2 dataset

Table 1. Summary of existing ESC datasets.

Dataset Source Total clips Clip length Classes

ESC-50 [34] Free-sound 2000 5s 50
Urban-Sound8K [35] Free-sound 8732 More than 4s 10

AudioSet [41] Youtube 2M 10s 527
FSD50K [42] Free-sound 51197 0.3s to 30s 200

SONYC- UST-v2 [40] SONYC acoustic 18510 10s 23

Additionally, several other domain-specific dataset usages were reported in prior 127

studies on environment sound observatory systems. For bird sound identification studies, 128

xeno-canto-archive [43], which is a bird sound-sharing portal, was used to acquire the 129

audio data essential for the experiment [28,30,44]. BIRDZ dataset, which is a real-world 130

audio dataset made using the xeno-canto archive was also used in the related literature 131

[45,46]. Similarly, the usage of the BirdCLEF dataset was identified in the prior studies, 132

which consists of 62902 audio files and is publicly available on Kaggle [47]. As all these 133

datasets are specific to a certain sound class, a combination of several such datasets is 134

required when developing a complete forest monitoring system. 135

Many researchers have experimented with a private dataset they have created ac- 136

cording to their requirements, due to the scarcity of forest-specific sound datasets. Such 137

datasets were generated using the audio data acquired from online sound repositories or 138

audio recorded by acoustic sensors or as a combination of both. Mporas et al. [3], have 139

created a chainsaw sound dataset, including the background noises such as rain and wind, 140

using the sounds acquired from freely available sound repositories. Ying et al. [11], have 141

experimented with an animal sound recognition system, and the required animal sounds 142

are acquired from Freesound. In contrast, Assoukpou et al. [6], combined the chainsaw 143

sounds recorded from acoustic sensors deployed in three different forest areas and other 144

sounds acquired from online websites to create a dataset to identify chainsaw sounds. 145

Accordingly, many environmental-sound classification studies have utilized the datasets 146

mentioned above with different sound classification approaches. In most of the studies, 147

CNN models were widely adopted as a firm basis for prominent audio classification mod- 148

els [20,36,48]. Besides, there are instances where ML algorithms were utilized for audio 149

classification [49]. One of the key distinctions when choosing between DL and ML was the 150

availability of well-labelled and high volumes of data. DL algorithms scale with the data 151

while increasing the performance, whereas ML plateaus at a certain level of performance 152

when adding more data. Table 2 shows an overview of DL and ML approaches deployed 153

for sound classification using the ESC-50 and U8K datasets. 154



Version February 7, 2023 submitted to Sensors 5 of 23

Table 2. Related studies on sound classification using ESC-50 and UrbanSound 8k Dataset.

Study ML/DL ESC-50 UrbanSound-8K

Model Accuracy Model Accuracy

[20] DL(CNN) DenseNet 98.50% DenseNet 97.10%

AlexNet 88.10% AlexNet 93%

ResNet 96.80% ResNet 99.20%

[36] DL(CNN) DenseNet 97.57% DenseNet 99.20%

ResNet 96.80% ResNet 99.49%

[48] DL(CNN) DenseNet 92.80% DenseNet 87.40%

[50] ML SVM 71%

3. FSC22 Taxonomy 155

Prominent research efforts carried out in the forest acoustic classification domain have 156

been based on a subset of an already established public dataset like ESC50, U8K, or on small 157

self-made datasets. Thus, the requirement for a well-defined dataset dedicated to forest 158

acoustics can be identified. As the first step of creating a benchmark dataset, a standard 159

taxonomy that can showcase and capture all the different acoustic scenarios present in 160

forest ecosystems needs to be established. 161

In the parent level of the proposed taxonomy, all the acoustic scenarios are classified 162

into six classes: mechanical sounds, animal sounds, environmental Sounds, vehicle Sounds, 163

forest threat sounds, and human sounds. Further, each class is divided into subclasses that 164

capture specific sounds which fall under the main category. For example, under the main 165

class, mechanical sounds, four subclasses can be identified, namely axe, chainsaw, handsaw, 166

and generator. This subdivision aims to introduce specific class labels to prevent the usage 167

of generalized labels like tree cutting, animal roar, etc. Figure 4. presents the complete forest 168

sound taxonomy developed to base the creation of the FSC22 dataset. Further, it showcases 169

the complete subdivision of the main six classes into 34 sub-classes. We have selected only 170

27 subclasses for the FSC22 dataset ignoring 7 subclasses shown in blue colour, due to the 171

unavailability of a sufficient number of sound clips in Freesound. Though all the left-out 172

classes have more than 200 search results in the Freesound platform, most of the audio 173

clips were artificially generated or included unnecessary noise making them unsuitable to 174

be included in the FSC22 dataset. 175

Figure 4. FSC22 Taxonomy

The proposed taxonomy is aimed at covering two main objectives. The first objective 176

is to completely cover fundamental acoustic scenarios such as chainsaw sounds, tree 177

felling, and wildfire, which are extensively used for research works. The second objective 178
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is to provide high-quality, normalized audio under unambiguous class labels. We have 179

extensively analyzed related literature, which has utilized forest acoustics and has identified 180

the most essential and frequent types of acoustic phenomenon that should be available in a 181

benchmark dataset to fulfil the first objective, as explained in Section 4. It should be noted 182

that the proposed taxonomy is not fixed and with time, more related acoustic classes under 183

forest acoustics need to be added while refining the taxonomy to achieve saturation. 184

4. FSC22 Dataset 185

The proposed FSC22 dataset [33] in this paper is a public benchmark dataset containing 186

2025 audio samples normalized to 44100 Hz sample rate, 16-bit depth, and stereo channel 187

configuration. All the audio samples are distributed between six major parent-level classes. 188

Each audio is further divided into scenario-specific low-level classes, which capture the 189

context of the considered audio sample as described in Section 3. The FSC22 dataset serves 190

two major objectives, the first one being the requirement to provide sufficient audio samples 191

for widely researched forest-related acoustic classes. The second objective is to present 192

high-quality normalized audio samples under event-specific class labels. This section 193

describes the procedure which was followed to develop the FSC22 dataset while ensuring 194

the objectives. Figure 5 shows the overall procedure of creating the FSC22 dataset and each 195

sub-process is described in this section. 196

Figure 5. Overall Procedure

4.1. Dataset Preparation 197

4.1.1. Data acquisition 198

The development of major datasets governing the acoustic classification domain is 199

mainly based on online audio collection portals such as YouTube, BBC Sound Effects 200

Library, and FreeSound Org. The usage of such sources presents unique advantages 201

and disadvantages. Therefore, it was initially required to select the source that FSC22 202

is based upon, to develop a high-quality benchmark dataset. Although both YouTube 203

and BBC Sound Effects Library are rich when some acoustic labels are considered, they 204

publicly present copyright issues when publishing the final dataset. FreeSound, available 205

at https://freesound.org/, is a free, public, online platform where thousands of audio data 206

are published, and it was identified that by basing the content of FSC22 on the FreeSound 207

platform, we could easily navigate the publishing issue. Further, the API endpoints 208

available in the FreeSound Platform allowed users to write python scripts to search for 209

different audio scenarios and download the metadata and the corresponding audio files 210

without manually searching and downloading the audio. 211

As the first step of data acquisition, we selected 27 classes from the FSC22 taxonomy 212

to complete in the first phase of the FSC22 dataset. For each of the selected class labels, we 213

queried for audio samples, which contain the considered label in the title or the description, 214

using the API endpoint for text search. The querying process was completed through 215

https://freesound.org/
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a python script. After all the matching audio samples were identified, their metadata 216

was class-wise written to spreadsheet files to be fed to the filtering and validation stage. 217

We selected 47832 audios and sent them for the filtering and validation step. Figure 6 218

showcases the number of audio samples identified via the data-acquiring step for each 219

selected 27 classes 220

Figure 6. The number of audio per class

4.1.2. Data filtering and validation phase 221

After spreadsheet files were completed for all the selected classes, all the sheets were 222

traversed to remove non-suitable query results which were present in the sheets due to the 223

noise associated with the API endpoint. After the filtering of suitable audio was completed, 224

each selected audio sample was manually checked by listening to them and downloaded 225

for further processing to begin. All the unclear or unsuitable audios for further processing 226

were removed to refine the dataset quality. Figure 7 shows the number of audio samples 227

selected from each class to be further processed to complete the FSC22 dataset. 228

Figure 7. The number of selected audios per class

4.1.3. Data processing and Validation 229

In order to generate 75 audio clips for each audio class, downloaded audio was 230

processed based on the duration of the original file. Audacity software was used for this 231
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procedure, which is an open-source application for audio editing and tagging. Downloaded 232

audio files were uploaded to the Audacity application and trimmed to 5 seconds. Selected 233

audios with longer duration were spliced into multiple recordings of 5 seconds. This step 234

was necessary for some classes due to the lack of suitable audio samples to complete the 235

considered audio sample limit per class. This process was repeated for all the sound classes, 236

and 75 audio recordings were validated and finalized at the end. 237

4.1.4. Data normalization and labelling 238

After the filtering and validation process was completed, all 27 classes, which were 239

selected for the first phase were finalized with 75 audio recordings. As the first step of 240

normalization, the sampling frequency was set to 44100 Hz, the bit depth was set to 16, and 241

the channel setting was configured to stereo for all the selected audio recordings, using the 242

load function of Librosa. In the audio extraction step, from the original audios in the earlier 243

phase, audios with nearly 5 seconds of duration were extracted. Hence as the second step 244

of normalization, the duration of all the selected audio was set to 5 seconds by trimming 245

excess parts or by padding with silence accordingly. 246

At the end of the normalization process, all the original audio samples were renamed 247

accordingly. In this step, the source file name was mapped into the dataset file name in the 248

format of UniqueClassIndex_UniqueAudioID.wav. The first part of the label indicates the 249

class related to the audio sample and is followed by a unique audio ID. Proper labelling of 250

the audio files will make it easier to navigate through the dataset. Once the audio files were 251

labelled, the corresponding metadata was entered into the base metadata file to complete 252

the development of the FSC22 dataset. 253

4.2. Content Description 254

FSC22 is a public benchmark dataset that can be utilized in research work governing 255

forest acoustic monitoring and classification. The dataset is developed according to the 256

taxonomy proposed in section 3. Out of the thirty-four subclasses listed in the taxonomy, 27 257

subclasses were completed for the first phase of the FSC22 dataset. Each subclass contains 258

75 selected audio samples, which have been manually checked for any inconsistencies. 259

Overall, the dataset contains 2025 audio samples, each with a duration of 5 seconds, 260

resulting in 2.81 hours of forest acoustics under the specified class labels. All the required 261

information about the audio samples available in the dataset is listed under the metadata 262

file located in the FSC22 master folder. The FSC22 master folder contains two subfolders, 263

audio wise V1.0 which includes the 2025 audio samples, and the Metadata folder which 264

holds the Metadata.csv file. 265

Readers of this study and the users of the FSC22 dataset should note that each audio 266

sample was renamed according to the following convention to better support the usage of 267

the new dataset. 268

- UniqueClassIndex_UniqueAudioID.wav eg: 1_10101.wav 269

Table 3 provides a snapshot of the Metadata.csv file for the convenience of the readers. 270

As shown for each audio file, the Metadata file provides: 271

• Source File Name - ID of the original audio sample, used to extract the corresponding 272

audio. 273

• Dataset File Name - ID of the audio, in the context of FSC22 274

• Class ID - Class Identification index (An integer from the range 1 to 27) 275

• Class Name - Class Name in which the audio is classified. 276
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Table 3. Sample of meta-data of the FSC22 Dataset.

Source File Name Dataset File Name Class ID Class Name

17548__A.wav 1_10101.wav 1 Fire
17548__B.wav 1_10102.wav 1 Fire
17548__C.wav 1_10103.wav 1 Fire

4.3. Importance of FSC22 to the Forest Acoustics Domain 277

Analyzing the research contributions made towards the forest acoustic domain, it 278

becomes evident that a publicly available forest-specific sound dataset is unattainable. 279

Due to the scarcity of a standard dataset for forest sounds, the research community has 280

experimented with different approaches for data acquisition. Few can be identified as 281

obtaining sound recordings by employing sound sensors, collecting sound clips available 282

in online sound repositories and extracting the sounds from YouTube videos. Table 4 283

summarizes the sound acquisition approaches used in previous forest acoustic domain 284

research for a better overview. 285

Table 4. Sound acquisition approaches in related studies.

Study Domain Source Dataset acquiring approach

[3] Illegal logging detection Freely available online sound data
repositories

Collected audio recordings of chainsaws and
environment background noises (rain, wind, birds)

[11] Animal sound
recognition Freesound Collected bird sounds, mammal sounds, and

insect sounds

[10] Tree cutting detection Sensor recordings from an urban
environment

Collected 18 chainsaw sounds, 27 vehicle sounds,
20 forest-specific sounds, 28 background sound

clips

[51] Animal sound
recognition HU-ASA database Collected 1418 animal sound clips from the archive

[44] Bird species detection Xeno-Canto Collected 2104 sound clips for 5 bird species

[4] Illegal Tree Cutting ESC-50 Selected specific 7 classes related to forest
environment (wind, chainsaw, rain, birds, etc.)

[6] Chainsaw sound
identification

Sensor recordings from a forest
environment and online sound

repositories

Collected 301 chainsaw sounds and 2964 other
sounds (bird, insects, animals, etc.)

[5] Chainsaw and vehicle
sound detection

Sensor recordings from the forest
and urban environments

Acquired 57 chainsaw recordings, 70
vehicle/engine sounds, 62 forest sounds, 28

general urban sounds

[31] Illegal Logging Detection Sensor recordings from a forest
environment Collected 100 chainsaw sounds

Findings in Table 4 confirmed that in most of the early studies, authors have prepared 286

a separate dataset according to their requirements due to the unavailability of a proper 287

forest acoustic dataset. However, data collection is a complex and time-consuming task 288

which could be an overhead for research tasks. Hence, the requirement for a standard 289

dataset arises. Addressing the problem of the unavailability of a standard dataset, this 290

paper introduces FSC22, which includes forest-specific sounds under 27 classes. This 291

dataset covers most of the general acoustic classes identified in a forest environment. The 292

FSC22 dataset will be a great contribution to any further research performed under the 293

forest acoustic domain. 294
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5. Methods and Technical Implementation 295

For ESC, both ML and DL have been extensively used in related literature. Therefore, 296

we provide classification experiments covering both architectures. An Extreme Gradient 297

Boosting (XGBoost) based experiment is provided for the ML approach, while a CNN- 298

based experiment is provided for the DL approach. These models were used as the baseline 299

models. 300

5.1. Feature Engineering 301

Feature engineering is a principal requirement for a successful ML pipeline. Studies 302

focusing on the audio classification domain properly emphasize the requirement of ad- 303

vanced feature engineering techniques like the usage of spectrograms to represent audios 304

in the time and frequency domains [4,6,10,17,52], and the audio augmentation techniques 305

to prevent overfitting of the prediction algorithm [13,14,46,53,54], to obtain state-of-the-art 306

classification performances. This section provides an overview of the feature engineering 307

techniques followed in the proposed experiments as shown in Figure 8. 308

Figure 8. Feature preparation methodology

5.1.1. Considered Datasets 309

As described in subsection 4.3 quality audio data is scarce under the forest acoustics 310

domain, thus a benchmark dataset that could be used to compare the quality of the pro- 311

posed FSC22 dataset cannot be identified in the related literature. ESC50 dataset, which is a 312

benchmark dataset used under the ESC domain is therefore used to compare the perfor- 313

mance of the FSC22 dataset. For the study 2000 audio recordings, each of 5-second duration 314

distributed into 50 unique classes from the ESC50 dataset, and 2025 audio recordings 315

each of 5-second duration distributed into 27 unique classes from the FSC22 dataset were 316

subjected. 317

5.1.2. Data Augmentation Technique 318

Data augmentation is an important step in the feature engineering phase to artifi- 319

cially expand the available data samples for training and testing ML and DL algorithms. 320
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Especially when it comes to DL approaches, models suffer from overfitting when the 321

amount of training data available is considerably less [55]. For the proposed experiments, 322

Positive pitch shifting and negative pitch shifting, where the pitch of audio recordings is 323

increased and decreased by two steps respectively, are utilised [56]. The pitch shifting was 324

implemented with the pitch_shift function provided by Librosa.effects library for python. 325

As a result of a single audio sample, two new augmented audios were created increas- 326

ing the amount of data available. In summary, due to the augmentation with pitch shift, 327

the number of audio samples from ESC50 was increased to 6000, while the FSC22 dataset 328

increased to 6025 audio samples. For both datasets, 80% of the audio samples were used 329

for training the model, while 20% were used for validating the performance of the trained 330

model, by following the Pareto Principle as in most of the general cases, 80% of effects 331

come from 20% of causes. 332

5.1.3. Feature Extraction 333

Under the audio classification domain, the general practice is using spectrograms, 334

representing an audio signal in both time and frequency domains, as the feature extraction 335

mechanism. The Mel Spectrogram (MEL) [20,57] and the Mel Frequency Cepstral Coeffi- 336

cients (MFCC) [3,10], which can be identified as the two most utilized spectrograms, are 337

used to extract the features for this study. In order to extract the spectrograms from the 338

raw audio data, the Mel spectrogram and MFCC are provided by the librosa.feature library 339

was used. Using both functions, each audio file gets sampled into overlapping frames, 340

and for each frame model coefficient or Mel frequency, cepstral coefficients are calculated. 341

Thus, calculated coefficients are returned as a 2-dimensional array of shapes (number of 342

coefficients x number of samples). As a further improvement, for the Mel spectrograms 343

obtained, all the coefficients were converted to the decibel scale from the power scale. 344

As shown in Figure 8, ML based classifications generally utilize 1-dimensional fea- 345

tures. Therefore, it is required to reduce the dimensionality of the created spectrograms, 346

before they were used with the XGBoost model. This was achieved by aggregating the 347

1-dimensional feature vectors extracted for each overlapping frame into a single vector 348

by taking their mean value. For DL based classification, an image-like representation of 349

the features according to the RGB mode is required. Hence for each audio sample, three 350

spectrograms were created by changing the length of the window used for framing. Cre- 351

ated spectrograms were of windowing length of 93 milliseconds, 46 milliseconds, and 23 352

milliseconds and this was achieved by keeping the sample rate parameter at 22050 Hz and 353

the n_fft parameter in 2048, 1024, and 512, respectively. 354

5.2. Machine Learning based Classification 355

Related literature that explores the automated classification of acoustic phenomena 356

that is abundant in forest ecosystems has utilized different ML algorithms to carry out 357

the classification task. Among such efforts, ML algorithms like KNN, SVM, and Random 358

forests can commonly be identified. Due to the superiority of the Extreme Gradient 359

Boosting (XGBoost) algorithm against such traditional ML algorithms, this study explores 360

the usability of XGBoost to properly classify forest acoustics. 361

XGboost is capable of handling non-linear relationships in the features. Handling 362

non-linear relationships are important in sound classification as there are many non-linear 363

relationships between the sound features and the class labels. Moreover, it has the ability 364

of XGBoost to learn from the errors made by previous trees. Additionally, XGBoost use L1 365

and L2 regularization which is important to reduce overfittings. 366

The XGBoost library available for python was used to conduct the tests and the model 367

parameters were used to fine-tune the performance of the implemented model. As the 368

final set of parameters, num_class was set to 27, the multiclass classification error rate was 369

used as the eval_metric, subsample, colsample_bytree and min_child_weight was set to 1, 370

max_depth of 6, learning_rate of 0.3 and 100 n_estimators were used. Further, to improve 371

the memory efficiency and the training speed of the XGBoost model, both the training 372
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and validation datasets were converted to the internal data structure (DMatrix) used by 373

the model which is optimized for both memory efficiency and training speed. Then the 374

configured model was trained with 80% of the considered dataset, and the evaluation was 375

completed with the remaining 20% of the data using the trained XGBoost model. 376

5.3. CNN-based classification 377

Although it can be identified that a substantial number of studies have used ML-based 378

algorithms to classify unstructured data like audio and images, DL based models can 379

outperform the traditional ML models with considerable margins, due to their ability to 380

extract features from raw data [58]. For the study, a Convolutional Neural Network [14,59] 381

based model consisting of 9 layers has been utilized, based on the work of the authors of 382

[36]. 383

Similarly, as in the ML-based approach, 80% of the data were used to train and fine- 384

tune the CNN model, while the remaining 20% was used for the validation procedure. The 385

model was configured to run for 50 epochs; however, an early stopping callback function 386

was used to stop the model from overfitting to the training data. Implementation of the 387

model was completed using the Keras library provided by TensorFlow [60]. Figure 9 388

presents the architecture of the model accompanied by the parameters used to implement 389

the model using the Keras library. 390

Figure 9. The CNN based architecture of the model

6. Dataset Evaluation 391

In order to analyze the performance and characteristics of the FSC22 dataset, three 392

major classification experiments were performed. As the first phase, a human classification 393

experiment was conducted to identify a baseline classification accuracy for the FSC22 394

dataset. An ML and DL based classification of the FSC22 dataset was conducted as the 395

second phase, to generate comparable performance scores respective to related studies. 396

Finally, the same ML and DL models were tested with the ESC50 dataset to present the 397

general performance of the developed models. This section describes each experiment and 398

the results obtained. 399
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6.1. Human Classification Result of FSC22 400

Hearing and identifying sound through the human auditory system depend on a 401

series of complex steps. Scientists have discovered that a form of auditory learning occurs 402

in daily life to help us identify and memorize sound patterns. Hence, when a certain 403

sound pattern differs from a small factor like noisy background, humans find it difficult to 404

recognize the exact sound type. Humans’ identification of sound types comes with a high 405

level of uncertainty, which may differ from machine classification. In order to identify this 406

difference in human decisions, a human classification experiment was carried out for the 407

created dataset. For this experiment, 25 participants in age groups 20-30 were selected. The 408

survey includes audio-based questions where the participants were instructed to select the 409

correct label after listening to the sound clips [61]. For the creation of the survey Free Online 410

Survey Software and Tools | The QuestionPro® platform [62] was used. The questionnaire 411

contains two randomly selected audio clips from each class and altogether 54 questions 412

were included for the 27 classes. For each question, 4 choices of labels were given. 413

After the completion of the survey, an overall accuracy of 91% was observed for the 414

selected audio samples. These survey responses were used to calculate the class-level 415

recognition accuracies. It was identified that the human candidates achieved a maximum 416

classification accuracy of 98% for the classes, Wolf, General Speaking, and Rain, while 417

the two classes, Squirrel and Fire, achieved the lowest accuracies, showing the hardness 418

to identify such sounds by the human auditory system. Figure 10 shows the human 419

classification accuracies obtained for all the classes of the FSC22 dataset. 420

Figure 10. Class accuracies obtained in human classification

6.2. Baseline Model-based classification results of FSC22 421

As the second approach for dataset evaluation, a baseline classification analysis was 422

performed using XGBoost and CNN based models. Section 5 provides a detailed overview 423

of the baseline model selection and classification procedure. With the desired target 424

accuracy results obtained through human classification in subsection 6.1, the next goal is to 425

investigate the level of performance that can be achieved on a baseline model classification. 426

The baseline XGBoost and CNN based models were evaluated on the FSC22 dataset 427

using the evaluation metrics accuracy, F1-score, precision, and recall. Accuracy is the 428

most intuitive performance measure, and it provides the ratio of the correctly predicted 429

samples to the total samples. While precision provides the ratio of correctly predicted 430

positive samples to the total predicted positive samples and recall gives the ratio of correctly 431

predicted positive samples to all samples in the actual class. The F1-Score is the weighted 432

average of Precision and Recall. The metrics module of the Scikit-learn (Sklearn) library 433

was used to calculate all the metrics, for the precision, recall, and F1-score, averaging was 434
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done using the unweighted mean as all the classes were balanced for both datasets. Table 435

5 and Table 6 provide the summary of results obtained by evaluating the FSC22 dataset 436

against the baseline models XGBoost and CNN-based, respectively. 437

6.2.1. Results of ML-based Classification 438

As shown in Table 5, the FSC22 dataset had an average classification accuracy ranging 439

from 48.14% to 62.17% for the selected XGBoost ML model. The highest classification accu- 440

racy of 62.71% was reported for the model with the MFCC feature extraction mechanism. 441

In order to better analyze the results, the confusion matrix of the highest accuracy reported 442

approach is displayed in Figure 11. A confusion matrix visualizes and summarizes the 443

performance of a classification algorithm. According to the matrix, it can be identified that 444

the Silence and Bird chirping classes obtained the highest-class level accuracy of 99.58% 445

and 98.84%, respectively. Moreover, the Axe class and Generator class have shown the 446

lowest accuracies among the 27 classes. 447

Table 5. Results of ML based classification of the FSC22 dataset.

Feature
Representation Augmentation Accuracy F1 - Score Precision Recall

MFCC Applied 62.71% 0.62 0.63 0.62
MFCC Not Applied 55.06% 0.54 0.55 0.55

Mel Spectrogram Applied 56.04% 0.56 0.57 0.56
Mel Spectrogram Not Applied 48.14% 0.47 0.48 0.48

Figure 11. Confusion Matrix for Xgboost based Classification with MFCC for augmented data

6.2.2. Results of CNN-based Classification 448

When compared with the ML-based classification approach, CNN based classification 449

has shown a significant performance with the FSC22 dataset. As reported in Table 6, the 450

dataset had an average classification accuracy ranging from 53.08% to 92.59% for the CNN 451

model. Out of the four classification accuracies, 92.59% is shown as the highest which is 452

obtained for the CNN model with the MEL feature extraction mechanism. The confusion 453

matrix given in Figure 12 for the approach which has the highest overall accuracy can 454

be used to evaluate the class-level accuracy of the dataset. According to the matrix, it is 455

apparent that almost all the classes have a very high accuracy level, while Generator and 456

Rain classes obtained the lowest among them. 457
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Table 6. Results of CNN based classification of the FSC22 dataset.

Feature
Representation Augmentation Accuracy F1 - Score Precision Recall

MFCC Applied 89.30% 0.893 0.898 0.893
MFCC Not Applied 53,82% 0.533 0.552 0.538

Mel Spectrogram Applied 92.59% 0.925 0.929 0.925
Mel Spectrogram Not Applied 53.08% 0.52 0.53 0.53

Figure 12. Confusion Matrix for CNN-based classification with Mel Spectrogram for the augmented
data

6.3. Model evaluation results of the ESC-50 dataset 458

All the trials conducted with the two feature extraction approaches, for the ML and 459

CNN-based classification of the FSC22 dataset were tested with the ESC50 dataset. All the 460

conducted experiments were evaluated based on the metrics presented in Section 6.2. Table 461

7 showcases the results obtained with the ML approach, while Table 8 presents the CNN- 462

based classification results. It can be identified that the trial which used data augmentation 463

and the MFCC feature extraction obtained the highest accuracy of 53.25% for the ML-based 464

approach. Moreover, the CNN-based approach which used Mel Spectrogram-based feature 465

extraction supported with data augmentation generated the highest classification accuracy 466

of 92.16%. 467

Table 7. Results of ML based classification of ESC50 dataset.

Feature
Representation Augmentation Accuracy F1 - Score Precision Recall

MFCC Applied 53.25% 0.525 0.529 0.532
MFCC Not Applied 43.50% 0.431 0.455 0.435

Mel Spectrogram Applied 48.18% 0.478 0.493 0.481
Mel Spectrogram Not Applied 31.75% 0.309 0.325 0.317
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Table 8. Results of CNN based classification of ESC50 dataset .

Feature
Representation Augmentation Accuracy F1 - Score Precision Recall

MFCC Applied 85.41% 0.855 0.866 0.854
MFCC Not Applied 42.25% 0.408 0.443 0.422

Mel Spectrogram Applied 92.16% 0.921 0.925 0.921
Mel Spectrogram Not Applied 44.75% 0.429 0.448 0.447

7. Discussion 468

7.1. Lessons Learned 469

We have conducted eight performance comparisons over the FSC22 dataset, as shown 470

in Table 5 and Table 6. These experiments are listed as follows. 471

- E1: Accuracy of XGBoost model with MFCC and data augmentation 472

- E2: Accuracy of XGBoost model with MFCC and no data augmentation 473

- E3: Accuracy of XGBoost model with Mel Spectrogram and data augmentation 474

- E4: Accuracy of XGBoost model with Mel Spectrogram and no data augmentation) 475

- E5: Accuracy of CNN model with MFCC and data augmentation 476

- E6: Accuracy of CNN model with MFCC and no data augmentation 477

- E7: Accuracy of CNN model with Mel Spectrogram and data augmentation 478

- E8: Accuracy of CNN model with Mel Spectrogram and no data augmentation 479

The same experiments were conducted over the ESC50 dataset to further support the 480

observations as shown in Table 7 and Table 8. This section provides a discussion of the 481

observations made after the experiments were completed. 482

7.1.1. ML vs DL for environmental sound classification 483

ML and DL techniques have been extensively used in related literature for environ- 484

mental sound classification. To establish a performance comparison between ML and DL 485

architectures over the FSC22 and ESC50 datasets, eight comparisons were done based on 486

the above defined performance measures. For FSC22, the CNN model outperformed the 487

XGBoost model by a significant margin for all the comparisons, E1 vs E5, E2 vs E6, E3 vs 488

E7 and E4 vs E8. For the ESC50 dataset, CNN based approach outperformed the XGBoost 489

approach in comparisons E1 vs E5, E3 vs E7 and E4 vs E8. The XGBoost outperformed the 490

CNN model when MFCC was used for feature extraction of the non-augmented dataset 491

(E2 vs E6). Careful evaluation of results published under related literature provides similar 492

evidence, to identify that DL algorithms perform better when it comes to complex classifica- 493

tion tasks such as audio data tagging. It can be identified that this is due to reasons like the 494

ability of DL algorithms to extract inherent features from the raw data avoiding selective in- 495

variance [55], the ability of DL algorithms to learn from large volumes of data [36], and less 496

requirement of feature engineering before the training of the model. Although DL presents 497

high accuracies compared to ML, they need high resources for the training to complete and 498

the resulting models are complex and suffer from low interpretability and explainability 499

[63]. Thus, for proper real-world deployment of a DL-based sound classification system, 500

further research is required to understand and improve the underlying dynamics. 501

7.1.2. Importance of Data Augmentation techniques 502

A major requirement to develop proper artificial intelligence models is the availability 503

of large volumes of quality data. When the forest sound classification domain is considered, 504

the availability of well-defined, quality public data is limited. Although the proposed 505

FSC22 dataset provides 2025 audio recordings providing 2.81 hours of record time, the data 506

volume is not sufficient to properly train a CNN, RNN, or ML model to achieve state-of-the- 507

art results. Data augmentation techniques can be successfully used to expand the available 508

data points and to present the significance. As observable by the results of Table 7 and Table 509

8, the performance of the XGBoost and CNN-based models show a significant improvement 510
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in accuracy, when augmentation techniques were employed, compared to the performances 511

obtained without augmentation. The CNN model used with the FSC22 dataset shows 512

accuracy degradations of 40% and 43% for the MFCC-based and Mel Spectrogram-based 513

approaches, respectively when augmentations were not applied. Similarly the XGBoost 514

model shows decrements of 12% and 14% for the two feature extraction approaches MFCC 515

based and Mel Spectrogram, respectively. Accuracy reductions can be identified for the 516

tests conducted with the ESC50 dataset as well. This empirical evidence showcases the 517

importance of using data augmentation techniques when training artificial intelligence 518

algorithms. Although we have successfully implemented baseline data augmentation 519

techniques to increase model performance, further research is required to understand 520

novel techniques that can solve data insufficiency issues while preventing models from 521

overfitting. 522

7.1.3. Feature Representation Methodology 523

In the domain of audio classification, extracting feature embeddings that can accurately 524

represent the audio signal is of utmost importance. For the ML and DL models implemented 525

in this study, Mel Spectrograms and MFCC spectrograms were employed as discussed in 526

subsection 5.1.3. With the experiments conducted for both FSC22 and ESC50 datasets using 527

the ML-based approach, it can be identified that the usage of MFCC-based feature extraction 528

outperforms the tests conducted with Mel Spectrograms as the feature representation. 529

However, for the DL-based approach, Mel Spectrogram-based feature extraction provided 530

the highest accuracies, except for the test conducted without augmentation for the FSC22 531

dataset. Hence, in the context of this study, a clear separation cannot be drawn between the 532

two spectrogram methods, for the task of representing audio signals. 533

7.2. Comparison with the Existing Sound Datasets 534

Due to the unavailability of a publicly available benchmark dataset to be used for forest 535

acoustic classification tasks, researchers have utilized different techniques to fulfil their 536

data requirements as explained in subsection 4.3. Table 9 provides a comparison between 537

the results of the existing studies and the highest-performing approach proposed in this 538

paper. Accordingly, it can be seen that this study has utilized the highest number of audio 539

recordings distributed in 27 unique forest acoustic classes while achieving state-of-the-art 540

classification accuracies for the forest sound classification-based studies. However, when 541

the model performances are compared to the state-of-the-art performances achieved for the 542

broader ESC domain, it can be identified that the results published in this paper require 543

further refinement. Therefore as future directions, applying transfer learning using the 544

ImageNet dataset [36,64,65], exploring different data augmentation techniques [32,46,66], 545

and feature representation methodologies [67,68] are suggested by the authors. 546
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Table 9. Comparison of existing datasets

Paper Model Amount of
data Types of data used Feature Metric Result

[3] SVM
The total

duration of
around 5 min

Chainsaw sounds with background
noise MFCC accuracy 91.07%

[11] Random
forest 40 Bird sounds, Mammal sounds,

Insect sounds from Freesound
Double
Features

Average accuracy
rates in different

environ-
ments(Rain, Wind,
Traffic, Average)

86.28%

[51] Cyclic HMM 1418 Animal sounds from HU-ASA
database MFCC accuracy 64%

[4]
Configuration

based on a
CNN

280

Chainsaw sounds, Chirping birds,
Crackling fire, Crickets, Handsaw,

Rain, and Wind extracted from
ESC50

MFCC accuracy 85.37%

[6] SVM with
Log Kernel 3265 Chainsaw Sounds MFCC TPR 53.16%

[5]
Feed

Forward
Network

217
Chainsaw sounds, Vehicle/Engine

Sounds, Forest sounds, Urban
sounds

Fourier
power

spectrum
coefficients

accuracy 79.50%

[31] CNN 100 chainsaw Fourier
Spectrogram accuracy 96%

This
Study CNN 2025 27 Unique classes Mel

Spectrogram accuracy 92.59%

7.3. Future research directions 547

This study introduces the FSC22 dataset and proposes a baseline architecture for 548

the classification of forest acoustics. As presented in section 7.2, the developed CNN 549

based classification model outperforms existing forest acoustics classifier systems. Authors 550

identify following directions for the reference of researchers working in the forest acoustics 551

domain. 552

7.3.1. Practical deployment of forest acoustic classification systems 553

Forest acoustic classification systems can provide valuable information to protect 554

forest reserves from natural and artificial phenomena. A practical implementation will 555

require the classification model to be deployed in a resource constrained edge device, which 556

will be challenging. The best performing CNN model proposed in this study contains 557

4.6 million parameters and to be deployed in an edge device, complexity needs to be 558

reduced substantially. Techniques like pruning, XNOR-NET and bottleneck layers can be 559

effectively used to reduce the model complexities, but will reduce the model performance 560

by a significant amount [41]. Hence future work is required to identify methodologies to 561

generate reduced complexity models for FSC while preserving the classification accuracy 562

on a reasonable scale. 563

7.3.2. Explainability and interpretability of FSC models 564

Explainability and the interpretability of machine learning models is an emerging 565

domain which presents interesting effects to the way that ML models are utilised. Ex- 566

plainability refers to the ability of a learning model to provide human-understandable 567

explanations for its predictions. Interpretability refers to the ability to understand the inter- 568

nal workings of a model and how it arrives at its predictions. Forest sound classification 569
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systems with the potential of being deployed in the forest ecosystems to help authorities, 570

can greatly benefit from a transparent classification model. Amount of studies covering 571

the explainability and the interpretability of ESC or FSC models is scarce. Thus authors 572

recommend future researchers working in this domain to contribute to develop more 573

explainable and interpretable audio classification models. 574

Apart from the above two major research directions, it can be identified that state of 575

the art ESC models have comparatively high performance measures with respective to iden- 576

tified FSC models including the CNN based model proposed in this study. State of the art 577

ESC models have utilised techniques like transfer learning from the Imagenet dataset, mul- 578

tiple aggregated feature representations, multiple data augmentation strategies to achieve 579

very high performance measures. Therefore the authors recommend future researchers un- 580

der FSC to explore such techniques and utilise them to improve the performance measures 581

of current FSC models to a comparable scale. 582

8. Conclusion 583

Environment sound classification (ESC) using artificial intelligence is a prominent 584

research area in audio recognition. Under ESC, forest sound classification (FSC), which 585

focuses on identifying artificial and natural phenomena observable in forest ecosystems, 586

receives a high research interest. Recognition of forest sounds generates highly valuable 587

use cases when scenarios like illegal logging, poaching, and wildfires are considered. FSC 588

suffers from the unavailability of a standard sound taxonomy and the unavailability of a 589

sufficiently large public benchmark dataset. With the intention of resolving both issues, 590

this study presents the FSC22 Taxonomy and the first version of the FSC22 dataset. The 591

first version of the FSC22 dataset consists of 2025 human-annotated, 5-second-long audio 592

recordings equally distributed into 27 unique classes. The authors intend to expand the 593

first version of the FSC22 dataset in the future, capturing more acoustic classes according 594

to the FSC22 taxonomy. Further, the study presents CNN-based and XGBoost-based 595

classification experiments using the FSC22 dataset. CNN-based approach achieved a 596

maximum classification accuracy of 92.59%, while the XGBoost model achieved a maximum 597

accuracy of 62.71%. A survey conducted with 25 human candidates to identify different 598

sounds from the classes listed in the FSC22 dataset was also conducted to establish a 599

baseline accuracy score. Finally, the authors believe that the proposed FSC22 taxonomy, the 600

created FSC22 V1.0 dataset, experiments conducted, and the discussions provided through 601

this study will support future research work governing the FSC domain. 602
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